
DOT/FAA/CTo86/34

FAA TECHNICAL CENTER
Atlantic City International Airport
N.J. 08405

/ _/ L.j r_

'e_Fa __Hardwar u nsertnon an

Instrumentation System:
Experimentatnon and Results

J.W. Benson
D.B. Mulcare
W.E. Larsen

t_ASj-CEt-lE27_6) [-]AE£tiABE }AtL_ IHS_IR_IO_

_t_L _5_L15 (Lcck_eed-Gecrqia Cc.) 80 p
_SCJ, OlD

G3/60

N89-I0526

Onclas
01376"_q

March 1987

This document is available to the U.S. public
through the National Technical Information
Service, Springfield, Virginia 22161.

U 5 Def:_rtmen! of Tronsp xtotK:_

Fede_ _ au_mJds_

FOREWORI _

This report describes the theory, condt_ct, and results of automated low-

level hardware fault testing that _ w_s performed as part of an FAA-

sponsored program entitled "Methods f¢>r the Verification and Validation

of Digital Flight Control Systems." Specifically, this work was

accomplished as Subtask 4.5.7 of Co1_tract NAS2-I1853, Modification 2.

The intent has been to demonstr a_:e, describe, and critique the

intensive, statistically based asse_;sm ent of fault detection and

recovery mechanisms, especially as imp_cts system reliability. Such an

approach is considered to offer exceptional new capability for

establishing airworthiness of critical digital flight systems.

Over 2500 simulated hardware fault ca_es were applied at the chip pin

level in the Reconfigurable Digital Flight Control System (RDFCS)

Laboratory at NASA Ames. Most testin_ was done on an open-loop basis;

the more persistant faults, however, were subjected to closed loop

simulator testing in order to involve explicit fault detection

mechanisms. The test results are in reasonable accord with similar

prior data, conform well with the associated fault models, and indicate

the value of this type testing for prsctical system validation efforts.

Acknowled_ement

The authors would like to acknowledg_ the contribution of John McGough

of Allied/Bendix Aerospace, Flight Sy_tems Division, for his advice and

assistance in the planning and interp_'etation of the experiments. It is

fair to say that the contents of t]_is report are due as much to his

efforts as to ours.

_ii

TABLE OF CO_:TENTS

Section

3.0

4.0

5.0

6.0

7.0

8.0

9.0

INTRODUCTION

EXECUTIVE SUMMARY

2.1 Previous Fault Inje_tion Experiments

2.2 Objectives

2.3 Results and Conclusions

2.4 Recommended Future 5tudies

RESULTS OF PREVIOUS FAUlt INJECTION EXPERIMENTS

3.1 Overview of the Berdix and CSDL Studies

3.2 Results

3.3 Conclusions

UNRESOLVED ISSUES OF FCS SURVIVABILITY ASSESSMENT

4.1 Definitions: Fault Types and Associated

Processes

4.2 Unresolved Issues

4.3 Strawman Single FmLlt Model

4.4 Extension to Multi],le Fault Model

DESCRIPTION OF FIIS CAPABILITIES

OBJECTIVES OF THE FAULT INJECTION EXPERIMENTS

RESULTS OF FIIS EXPERIMENTS

7.1 Test Ground Rules/Procedures

7.2 Results

7.2.1 Open-Loop/Closed-Loop Detection

Coverage

7.2.2 Detection C nverage of Baseline

and Auxiliary Programs

7.2.3 Latency Histograms

COMPARISON WITH PREVIOtS FAULT INJECTION

EXPERIMENTS

SUMMARY AND CONCLUSION_ OF FIIS EXPERIMENTS

9.1 Fault Detection

9.2 Single Fault Mode] Assessment

9.3 Problem Areas

3

3

3

4

5

7

7
9

I0

13

13

14

18

21

23

25

27

27

29

29

41

43

63

67

67

69

71

mRECEDING PAGE BLA_fK NOT FILMED

iiL

Section

i0.0

ii.0

A.

B.

TABLE OF CONTENTS (CONT'D)

RECOMMENDED FUTURE STUDIES

REFERENCES

APPENDICES

CAPS 6 COMPONENTS

FAULT WEIGHTING

73

75

A-I

B-I

iv

LIST OF FIGURES

Number

3

4

i0

II

12

13

14

15

16

Title

Single-Fault Model Markcv Version

Multiple-Fault Model for a Multiprocessor

System

Fault Insertion and Instrumentation System

All Open-Loop, Unweight_d Faults

(Invert Faults Excluded_

Open-Loop, Unweighted D_,ta Path Faults

(Invert Faults Excluded_

Open-Loop, Unweighted Cc_,ntrol Card Faults

(Invert Faults Excludedl t

Open-Loop, Unweighted 24101A Faults

(Invert Faults Excluded

Open-Loop, Unweighted Mi.cromemory Faults

(Invert Faults Excluded,

Open-Loop, Unweighted S-a-0 Faults

(Invert Faults Excluded_

Open-Loop, Unweighted S-a-i Faults

(Invert Faults Excluded)

Open-Loop, Unweighted laput Pin Faults

(Invert Faults Excluded)

Open-Loop, Unweighted O_tput Pin Faults

(Invert Faults Excluded)

Open-Loop, Unweighted Invert Faults

All Open-Loop, Unweighted Faults

(Invert Faults Included)

All Open-Loop, Weighted Faults

(Invert Faults Excludec)

Closed-Loop, Unweighteci Altitude Hold Faults

(Invert Faults Excludeci)

19

22

24

44

45

46

47

48

49

50

51

52

53

54

55

56

V

LIST OF FIGURES (CONT'D)

Number

17

18

19

20

21

Title

Closed-Loop, Unweighted Climb Faults

(Invert Faults Excluded)

Closed-Loop, Unweighted Turn Faults

(Invert Faults Excluded)

Closed-Loop, Unweighted Localizer Capture

Faults (Invert Faults Excluded)

Closed-Loop, Unweighted Glideslope Capture

Faults (Invert Faults Excluded)

Closed-Loop, Unweighted Glideslope Track

Faults (Invert Faults Excluded)

57

58

59

60

61

vi

LIST OFTAi_LES

Number

I

4

9

i0

Title

Open-Loop, Unweighted Fallts
(Invert Faults Included)

Closed-Loop, Unweighted Faults
(Invert Faults Included)

Open-Loop, Unweighted Faults
(Invert Faults Excluded)

Closed-Loop, Unweighted Faults
(Invert Faults Excluded)

Open-Loop,Weighted Fau]ts
(Invert Faults Included)

Closed-Loop, Weighted Feults
(Invert Faults Included_

Open-Loop,Weighted Faults
(Invert Faults Excluded]

Closed-Loop, Weighted F_ults
(Invert Faults Excluded)

Summaryof Open-LoopFa_its

Summaryof Baseline/Auxiliary Faults

32

33

34

36

37

38

39

4O

42

vii

1,0 INTRODJCTION

The Federal Aviation Administration (TAA) is executing a multi-faceted

plan to generate and disseminate information deemed vital in

establishing the airworthiness of near-rearm civil transports.

Particular emphasis is directed towacd the integrated application of

state-of-the-art tools, techniques, methodologies, criteria, and data to

evaluate the integrity, reliability, and capability of the onboard

software-based digital flight control Rnd avionic systems (Reference I).

This report summarizes the activities of one of the FAA-sponsored tasks.

As such, it will later be incorporated partially in Volume II of their

Digital System Validation Guidebook and presented at an associated

Government/Industry Workshop during 1988.

The FAA's research agenda in digital systems assurance technology has

been motivated by the trend within the aviation community toward more

highly integrated fault-tolerant digital architectures. The criticality

of these complex systems, moreover, is compounded by the range of their

application in varied functions such as structures, propulsion,

electrical power, flight control, and avionics. Fortunately, the

assurance technology being addressed as quite generic, so the focus here

on digital flight controls is represer, tative but not limiting as far as

the applicability of results is conceIned.

This particular task is the third in & sequence of FAA-sponsored program

elements focusing on low-level hardw_,re fault detection. Reference 2

detailed a study setting forth optior_s for modifying the RDFCS Facility

to support such experimentation, and Reference 3 documented the

mechanization of certain modificatiors actually needed to perform the

work reported herein. Note that these modifications, which are

described in Section 5, extended the utility of a Fault Injector System

(FIS) developed by the Charles _tark Draper Laboratories (CSDL)

(Reference 4). The added capabil_ty included automated test case

sequence application, instrumentation, timing, and interpretation

centered upon the FIS. Hence, _e expanded test system has been

referred to as the Fault Insertion anal Instrumentation System (FIIS).

THIS PAGE LEFT INTENTIONALLY BLANK

2.0 EXECUTIV_ SUMMARY

Fault injection experiments were condL_cted using the Fault Injection and

Instrumentation 'System (FIIS), which was developed, in a previous

program, by the Lockheed-Georgia Compeny under contract to the FAA. The

facility was resident at NASA Ames Research Center at Moffett Field,

California. The target hardware was a dual flight control computer,

which was part of a dual/dual flight control system for the Lockheed L-

i011 Tristar. Each dual lane featurec_ a Rockwell/Collins CAPS-6 digital

computer as the principal computational element. 2715 distinct'stuck-at

and invert faults were injected on th_ pins of devices of the data path

and control cards of the CAPS-6 while executing inner loops and

autopilot modes. Faults were detec_ed by hardware comparators located

in the secondary actuator drive elect_'onics or by self-test.

2,1 PREVIOUS FAULT INJECTION EXPERIM!_NTS

Similar fault injection experiment_; were conducted previously, and

independently, by Bendix (Reference 5) and the (CSDL) (Reference 4). In

the Bendix study a Bendix BDX-930 flight control computer was simulated

in software at the gate-level and faults were injected at gate nodes.

In the CSDL study faults were injec_ed on pins of digital devices of

FTMP (Fault-Tolerant Multi-processor) (References 4, 6, 7), which also

featured the CAPS-6 as the principal computing element. The fault

injector hardware was identical to that used in the present study. The

methodology and results of these studies were examined (Section 4) in

order to establish guidelines for the FIIS experiments, to avoid a

repetition of results and to identify gaps and ommissions which could be

remedied by further experimentation. In addition, a number of

unresolved issues associated with flight control system (FCS)

survivability assessment were identified (Section 4.2).

2.2 OBJECTIVES

The objectives of the FIIS experiments were:

I) Corroborate and augment, if ;ossible,

and CSDL studies.

the results of the Bendix

2)

3)

4)

Provide a database of detection coverage and fault latency which

future experimenters could use as goals or as a basis for

comparison.

Evaluate the FIIS fault injection methodology. It was hoped that

this methodology would be the first step in establishing guide-

lines for future fault injection experiments and fault detection

coverage estimation.

Provide a database for the construction of single and multiple-

fault models which could b_ used by reliability programs to

assess FCS survivability.

PRI_CEI)I_G PAGE BLANK NOT FILMED

5) Identify unresolved issues associated with FCS survivability

assessment and recommend studies to resolve them.

2.3 RESULTS AND CONCLUSIONS

A detailed description of the results of the FIIS experiments is given

in Section 7, with summary and conclusions, in Section 9. The results

and conclusions are briefly summarized here.

I) Most detected faults are detected by comparators within 500 ms

of their occurrence.

2) Most faults are activated by operational software or computer

hardware and not by sensor inputs.

3) Most faults (96.3_) were detected while executing the baseline

program, i.e., inner loops and altitude hold; 1.3_ were detected

while executing an autopilot mode; 2.4_ were not detected by

comparators at all. The undetected faults could accumulate in

redundant channels and eventually be activated by an

infrequently used outer loop computation.

4) All undetected faults were detected by self-test. Preflight or

background self-test is an effective way to eliminate latent

faults.

5) Faults which are activated by the baseline program produce

errors within 500 ms of their occurrence; faults activated by

the autopilot modes (and not by the baseline) produce errors

over somewhat longer intervals, e.g., up to 6.5 sec.).

6) 6.11_ of all faults were "don't care" faults. These were

subsequently identified and their effects removed from the

tabulations.

7) FIIS test results generally corroborated the results of the

Bendix and CSDL studies. This was surprising considering the

dissimilarity of sensor input selection, computer architecture

and operational software. Similarity at the lower levels of

computer hardware implementation may explain this phenomenon.

8) The FIIS methodology was thoroughly tested during the study.

FIIS performance was impressive, especially in the areas of (a)

fault generation capability, (b) ease of use, (c) fidelity, and

(d) the real time nature of the experiments. This latter

feature made it possible to make runs of 15 or more seconds of

real time, which would have been impracticable with a software

simulator. This high productivity during fault testing

facilitates comprehensive, and hence more conclusive, flight

computer hardware testing.

2,4 RECOMMENDED FUTURE STUDIES

A number of issues associated with F(S survivability assessment remain

unresolved. To resolve some of thes_ issues the following studies are

recommended:

i) Failure Modes of Digital Devices

As a practical first step,]_endix and CSDL injected stuck-at

faults on pins or gate nodes. It remains to be seen to what

extent these faults represent failure modes of real 'devices.

Hence, the deceptively difficul.t task of determing actual low-

level hardware failure modes i_ required.

2) Pin-Level Versus Gate-Level Fa_its

It is not likely that real failure mode data will become

available in the near-term. _n the interim, experimenters will

continue to use stuck-at fault;. The Bendix study indicated a

significant difference between pin-level and gate-level

detection coverage. At issue is the validity of either fault

type and the extent to which o_le is more or less latent than the

other.

3) Single and Multiple-Fault Models

These models are essential ingredients of reliability assessment

programs. Simple models for permanent faults were proposed in

Section 4. These models should be improved and extended to

include intermittent/transient faults, for these tend to occur

relatively often and they may substantially impact system

reliability.

4) Reliability/Survivability Assessment of an FCS

A reliability parameter sensitivity study should be conducted to

(a) identify critical ranges of single and multiple-fault model

parameters and (b) determine _nflight, preflight and maintenance

test coverage requirements to reduce latent faults to acceptable

levels. These issues neecl to be addressed so that more

confidence can be placed in s) stem reliability predictions.

THIS PAGE LEFT INTENTIONALLY BLANK

6

3.0 RESULTS OF PREVIOUS FAUL" INJECTION EXPERIMENTS

Prior to the FIIS experiments, most of the published information on data

latency in digital flight control systems was obtained from two

important studies conducted, independeltly, by Bendix (Reference 5) and

CSDL (Reference 4). The methodology and results of these experiments

were examined in detail in order to establish guidelines for the FIIS

experiments, to avoid a repetition of results and to identify gaps and

ommissions which could be remedied by _urther experimentation. Here the

intent is to demonstrate an effective methodology for calibrating fault

detection/latency in a dependable manner that relates readily to system-

level reliability.

3.1 OVERVIEW OF THE BENDIX AND CSDL SFUDIES

Bendix Study

The purpose of this study was to estimate (I) detection coverage of

several candidate self test programs and (2) fault latency in a

conventional, redundant digital flight control system. Fault injection

experiments were conducted on a software simulated version of the Bendix

BDX-930, bit-sliced flight control computer, which featured the 2901A

arithmetic logic unit (ALU) as the principal processing element. The

simulated components consisted of the central processor unit (CPU) and

micromemory, program memory and randcm access memory (RAM) scratchpad.

The I/O circuitry was not simulated: sensor inputs were randomly

generated and deposited in scratch_,ad memory at the start of each

computational frame. Each device of the CPU was represented by a gate-

equivalent circuit and stuck-at fault_ were injected at the gate nodes,

something not possible in actual hardware fault testing. The

micromemory was represented function_lly and faults were simulated by

reversing the logic states of single _its.

The program and RAM memories were a3so represented functionally but no

faults were injected into these devices. Faults were randomly selected

and injected, one at a time. Fault s_lection was weighted in proportion

to the failure rate of the device, i.e., the average number of faults

injected into a particular device was proportional to the device failure

rate. The simulation technique was "l,arallel mode" (Reference 8), which

allowed for the simultaneous simulati_n of up to 32 computers, one of

which was always the non-failed vei'sion. This made it possible to

compare the responses of the failed a_id non-failed computers at any time

in the compute cycle and at any devic,_.

Although all devices were simulate l at the gate-level, faults were

injected at both the pin-level and gate-level in order to determine

differences in detection coverage between the two fault types.

Two types of experiments were conducted, depending upon the method of

detection:

pRlgC_'_I'NG PAGE BLANK NOT FILMF_D

l)

2)

To determine the effectiveness of comparison monitoring, the

computed outputs of a failed and non-failed computer were

compared at the end of each frame. Any discrepancy was defined

as a "detected fault". These comparisons were performed by the

simulato_ executive and did not involve the detection mechanisms

that would normally be resident in the flight control computers.

Each computer executed the same flight control program, which

consisted of the inner loops for a high performance aircraft.

In order to reduce simulation time, a fault run was terminated

immediately after detection or after eight repetitions,

whichever occurred first. To avoid any ambiguity in the

comparison process, each computer received identical sensor

inputs at the start of each frame. The simulation was conducted

"open-loop," with sensor values selected independently and at

random.

To determine the effectiveness of

injected and a candidate self-test

fault was defined as "detected" if

test routine so indicated.

self-test, each fault was

program was executed. A

the mechanism of the self-

CSDL Study

The purpose of this study was to assess the fault detection,

identification and reconfiguration capabilities of the CSDL o

designed FTMP (References 4, 6, 7). This system featured the

Rockwell/Collins CAPS-6 computer as the principal processing

element. The CAPS-6 is similar to the BDX-930 in that it, too,

is a bit-sliced processor utilizing the 2901A, arithmetic logic

unit (ALU). FTMP is a triple modular redundant (TMR), bit-

synchronized multiprocessor designed for ultra high reliability

and fault-tolerance. The design is based on independent

processor-cache memory modules and common memory modules

(Reference 6) which communicate via redundant serial busses.

All information processing and transmission is conducted in

triplicate. Data transmitted over the bus network is monitored

by Bus Guardian Units (BGUs), which compare the transmitted

data, bit by bit. Faults are detected when they produce errors

at the BGUs. Faults are also detected by self test programs,

which are executed continuously, in the background.

The fault injection experiments were conducted on real hardware

and stuck-at faults were injected, one at a time, on device pins

of one of the three processing elements. (The fault injection

hardware was identical to that used in the FIIS experiments.)

Faults were systematically selected (unweighted) and injected on

pins of eight circuit boards: CPU Data Path, CPU Control Path,

Processor Read Only Memory, Processor Cache Controller, Bus

Guardian Unit, Transmit Bus Interface, Poll and Clock Bus

Interfaces, and System Bus Controller. FTMP executed a flight

control software program consisting of inner loops and autopilot

modes, which were patterned after the L-1011 Tristar flight
control system. Fault runs w_re terminated after 15 seconds of
real time. Unlike the Bendi>_ experiments, the simulation was
"closed-loop," i.e., the sensc_r values were obtained from the
motion parameters of a sim_Llated aircraft. For the more
persistent types of faults, _losed-loop testing may introduce
added fault detection capability via runstream/datastream fault
sensitivity.

3.2 RESULTS

i) Both studies indicated that m_st faults were detected within a

few computational frames of '_heir occurrence (e.g., O-500ms).

The fact that both studies p_oduced this result was surprising

considering the dissimilaritlir of input sensor selection,

computer architecture and ope_ational software. Because fault

runs were terminated after eight repetitions, the Bendix study

gave no information about detection beyond 800ms (assuming I00

ms/frame). The CSDL result_ indicated that relatively few

faults (2_-4_) were detected i_ later repetitions and these were

detected by background self-te_t programs (Reference 4). From

these results it was conjectured that most faults are activated

by the baseline software program and independently of the input

sequence. This phenomenon is generally accompanied by shorter

latency times.

2) CSDL injected 21,055 faults (each pin fault was injected 5

times, at different locations _f the program) and 3,637 (17.3_)

were undetected. CSDL estimated that about 3000 of the

undetected faults were "donWt care" faults, i.e., faults on

unused pins or on signals that were always low or always high

under normal circumstances. Of the remainder, a few were

analyzed and found to be "don't cares" In the Bendix study,

3000 faults were injected during the self-test evaluation phase

and each undetected fault was analyzed. It was found that 466

faults (15.5_) were "donft cares" and, of these, 245 occurred in

the bits of the micromemory ard 47 in the control PROMS. When

memory bit-faults were excluded, 7.2_ of gate-level faults were

"don't cares" and 6_ of pir=olevel faults were "don't cares"

Both Bendix and CSDL conclude¢ that the identification of "don't

care" faults was a non-trivial task, but essential to excluding

irrelevant test results as in the form of the completely

undetected faults.

3) The Bendix study found t_at 86.5_ of gate-level faults

(excluding bit-faults in the _icromemory and control PROMS) were

detected during the eight repetitions of the FCS program, based

on 148 injected "care" fau}ts. Pin-level faults were not

injected while executing tle FCS program. The equivalent

coverage in the CSDL study _s not clear because of the large

number of undetected, unanal_zed faults, most of which (but,

possibly, not all) were "de,nit cares." CSDL did conclude,

however, that between 2% and 4% of all detected faults were
detected by the background self-test programs and not by the
comparators. Since self-test was not executed during the FCS
experiments, Bendix would have concluded that these faults were
undetected.

4) The Bendix study showed that 88% of 2901A, gate-level faults

were detected during the FCS experiments, based on 52 injected

"care" faults. The CSDL study gave no results for this device.

5) In the Bendix study, 97.4% of gate-level faults and'97.6% of

pin-level faults were detected by self-test, based on 2234 and

376 injected "care" faults, respectively. The gate-level

coverage excluded bit-faults in the memory elements. When these

faults were included, coverage was 92%. The self-test program

consisted of 346 assembly language instructions and required

2ms-3ms to complete. The CSDL study gave no results for self-

test coverage.

6) The Bendix study concluded that gate-level faults were more

difficult to detect than pin-level faults, especially when

faults were injected into single bits of the memories. When

executing software, other than the FCS, the ratio of gate-level

to pin-level undetected faults was a factor of two.

Unfortunately, "don't care" faults were not identified in these

runs. As a result, detection coverage estimates tended to be

pessimistic.

3.3 CONCLUSIONS

The principal conclusions of the Bendix and CSDL studies are:

i) Most detected faults are detected within a few computational

frames of their occurrence.

2) The proportion of faults not detected by comparison monitoring

while executing the baseline program can range from 2% to 13.5%.

3) Although not discussed in the Overview, CSDL results showed that

detection, isolation and recovery could take up to several

seconds, during which time the system is potentially vulnerable

to second faults. The occurrence of a second fault, before the

first fault is isolated, could confuse the majority vote and

result in a system breakdown.

4) Both studies indicated a significant proportion of "donrt care"

faults (between 6% and 17.3%). These faults are difficult to

identify. Unidentified "don't care" faults could result in

uncertain and pessimistic detection coverage estimates.

i0

5) Self-test coverage of 95_ is easily achieved for pin-level
faults and for gate-level fallts, if memory bit-faults are
excluded.

6) There is a significant difference in detection coverage between
pin-level and gate-level faults particularly if memorybit-
faults are included in the latter.

The Bendix and CSDLstudies were intended to provide an initial database
for eventual FCSsurvivability assessment. In the next section someof
the unresolved issues connected with tPis assessment are discussed.

!1

THIS PAGE LEFT INTENTIONALLY BLANK

12

4.0 UNRESOLVED ISSUES OF FCS :IURVIVABILITY ASSESSMENT

Prior to conducting the FIIS experimen _:s, a survey was made to determine

some of the unresolved issues c,_nnected with FCS survivability

assessment. The'purpose of the sur-,ey was to identify issues which

could be resolved by further experimen1:ation.

In order to avoid confusion and ambiguity later on, we give a few

informal definitions of fault types _nd associated processes, some of

which were suggested by previous fault injection experiments and others,

from a survey of the literature.

4.1 DEFINITIONS: FAULT TYPES AND ASSOCIATED PROCESSES

Malfunction"

Fault:

Excitation:

An error at the output of a digital device.

An internal condition of a device which

causes a _alfunction for some combination of

input and internal state.

A conditicn such as an input or internal

state which, in conjunction with a fault,

causes the device to malfunction.

Permanent Fault:

Intermittent Fault:

A fault w_ich persists indefinitely.

A fault which occurs and reoccurs,

intermittently.

Healed Fault:
A former :ault which can no longer produce a

malfunctic,n for any excitation.

Transient Malfunction: A malfun,_tion which occurs for a brief

period ,if time and then disappears.

Sometimes referred to as a "transient

fault."

Latent Fault: A fault which has not yet produced a

malfunction.

Stuck-at Fault" A fault w_lich causes a gate node to assume a

logic 0 oc a logic i state, denoted by S-a-0

and S-a-l, respectively.

Pin-Level Fault:

Gate-Level Fault:

A stuck-at fault on

of a digital device.

A stuck-at fault on

equivalent circuit.

an input or output pin

a gate node of a gate-

PR_ED_G PAGE]LANK NOT PILMED

13

Don't Care Fault: A fault which cannot

for any combination

state.

produce a malfunction

of input and internal

Correlated Faults: Two or more faults which can produce a

malfunction for the same excitation.

Near-Coincident Fault: A fault which occurs before a prior fault

has been detected and isolated.

Baseline Program: A set of software that is _executed

continuously, e.g., an inner-loop.

Auxiliary Program: A software program that is executed

occasionally, e.g., an outer-loop.

Active Fault: A fault which can produce a malfunction

while executing the current on-line program.

Benign Fault: An inactive fault wrt

program but active wrt

some other program.

the current on-line

to (with respect to)

Alpha-Fault: An active fault wrt the baseline program.

Beta-Fault:
A benign fault wrt the baseline program but

active wrt an auxiliary program.

4.2 UNRESOLVED ISSUES

i) Effects of Latent Faults

Latent faults may accumulate in different lanes of an FCS,

particularly if pre-flight self-testing is limited in detection

coverage. Their eventual activation by a single excitation

event (e.g., the execution of a seldom-used outer-loop) could

result in a rapid loss of lanes, even if successively detected.

Such an event could have a significant impact on system

survivability. Required for this assessment:

o An understanding of the mechanisms that transform latent

faults into error-producing faults.

o Estimates of the accumulation of latent faults.

o Extent to which latent faults are correlated across

lanes.

o Single and multiple-fault models incorporating latent
faults.

o Reliability analyses.

14

The Bendix and CSDLstudies s]_owed that the build-up of latent
faults could range fron 2% t_, 13.5%, especially if background
self-test was not employed. Neither study examined the
potential correlation of these faults.

2) Effects of Intermittent/Transient Faults

These faults affect the rat_ at which errors are produced.
(Reference 9) addresses their affect on FTMPsurvivability.
These results should be extended to include a wider class of FCS
architectures. Transient faults could result in a premature
disengagement of FCSlanes if their rate of occurrence greatly
exceeds that of conventional failures. Most flight control
systems avoid premature, permanent disengagement by allowing the
reengagement of a previously failed lane under certain
conditions. Required for this assessment:

o Occurrence, duratior and reoccurrence
intermittent/transient faults.

rates of

o Relative proportion of intermittent/transient faults
versus permanent faults.

o Single and multi_le-fault
intermittent/transient faults.

models incorporating

o Reliability analyses.

3) Effects of Near-Coincident antEMultiple Faults

(Reference i0) addresses _:he potential problem of near-
coincident faults in a multi],rocessor system. The Bendix and
CSDLstudies gave an indication of the expected "time-on-risk"
during which the FCSis vuln,_rable to second faults. Multiple
fault conditions have yet to 1,e evaluated, e.g., the effect of a
latent fault followed by an ._ctive fault, particularly when the
latent fault may preclude detection of the active fault.
Required for this assessment:

o Fault injection experLments.

o Multiple-fault models

o Reliability analyses.

4) Proportion of Alpha/Beta Faults

The Bendix results were obtained while executing the baseline
FCSprogram. Thus, all detected faults were alpha-faults. It
was never determined if any of the undetected faults would have
been detected while executinE an auxiliary program. If so, then

15

the execution of an infrequently-used outer-loop could
simultaneously activate latent faults in different lanes. The
CSDLstudy gave no information on this subject. Required for
this assessment:

o The relative proportion of alpha and beta-faults.

5) Dynamics of Alpha/Beta Faults

The Bendix study found that alpha-faults produced errors, at
comparators, within several frames of their occurrence. Beta-
faults, once activated by an auxiliary program, could,
conceivably, produce errors at a different rate or be more
difficult to detect by self-test. Required for this assessment:

o Fault injection experiments which identify individual
faults and their detection while executing inner and
outer-loops.

o Estimates of self-test coverage for both types of
faults.

6) I/O Faults

Detection coverage estimates of I/O hardware faults are not
available, probably because of the difficulties in simulation.
Required for this assessment:

o Failure modedata for I/O devices.

o Techniques for simulating I/O hardware and associated
faults.

o Fault injection experiments on I/O hardware.

7) Failure Modesof Digital Devices; Pin-Level Versus Gate-Level
Fault Models

The Bendix study indicated a significant difference between pin-
level and gate-level fault detection. At issue is the validity
of either model. Required for this assessment:

o Failure modedata of actual digital devices.

o An analysis of the relative latency of pin-level and
gate-level faults.

8) Weighted Versus Unweighted Faults

In the Bendix study, faults were weighted according to the
failure rate of the device. In the CSDLstudy all faults were

16

treated as equally probable. At issue are a) the validity of
either approach and b) the relative, resultant differences in
detection coverage. Required for this assessment:

o Establish, once and for all, the definition of "fault
detection coverage."

o Estimates of detectior coverage for both approaches.

9) Guidelines for Simulation Testing

In order to obtain a industry-wide uniformity in simulation
testing it is necessary to establish guidelines. The guidelines
should include fault models, apportionment of fault types,
methods of simulation, FCS scenarios, self-test coverage
validation procedures, etc. _iequired for this assessment:

o Failure modedata.

o Recommendedfault models.

o Weighted versus unwei_;hted faults

o Recommendedmethods o!! simulation.

o Effects of latent faults on survivability.

o Establishment of _onfidence
requirements of test _esults.

o RecommendedFCSscenarios.

levels and accuracy

o Establishment of single and multiple-fault models and
the identification of critical model parameters.

i0) Self-Test Requirements

A typical FCS incorporates several self-test programs for
inflight, preflight and maintenance testing. At issue are the
coverage requirements of each test and the rationale for the
requirements. Required for this assessment:

o Build-up of latert faults and the effect on
survivability.

o The determination of an acceptable rate of build-up via
reliability analysis.

o Effects of periodic repair, possibly requiring higher
coverage levels.

17

ii) Proportion of Faults Affecting Surface Commands

Required for this assessment:

o FRuit injection experiments.

12) Proportion of Faults Affecting the Monitoring Process

Required for this assessment:

o Fault injection experiments.

o Analysis of failure rates of monitoring components.

13) Reliability AssessmentPrograms

A number of reliability assessment programs are now available to
the flight control community, e.g., CARE III, HARP,ARIES,
CARSRA,SURE,etc. Evidently, it remains to be seen whether
these programs are capable of representing and analyzing the
fault combinations identified in this section. Required for
this assessment:

o Establishment of single and multiple-fault models.

o Evaluation of the capabilities of the candidate
programs.

4.3 STRAWMAN SINGLE-FAULT MODEL

In planning the FIIS experiments, it was agreed, by all of the

participants, that the principal and fundamental objective was to obtain

a database for the reliability assessment of flight control systems. As

a consequence, it was necessary to anticipate the kind of data that

might be required. Recognizing that the key elements of a reliability

assessment program are single and multiple-fault models, it was decided

to generate a single-fault model in order to identify transition

parameters which could be obtained from the FIIS experiments. The

structure of the single-fault model was suggested from the experience

gained from the Bendix and CSDL studies. The model is semiomarkov and

appears to have sufficient degress-of-freedom to model a wide variety of

fault and error dynamics, particularly as observed in the Bendix and

CSDL fault injection studies. The model is intended to represent

permanent faults, only. The mathematically more tractable markovian

version is shown in Figure i. The following parameters describe the

fault and error dynamics:

!8

A = ACTIVE a.- FAULT

a = ACTIVE _- FAULT

b = BENIGN FAULT

a- FAUI.TS ,

GOOD

_- FAUL.TS

a

ROR

b

Figure I. Single-Faul: Model Markov Version

_9

pl

p2

p3

e_

- failure rate of a lane (failures/hour)

- proportion of alpha-faults

- proportion of beta-faults which are active at their

occurrence

proportion of beta-faults which are benign at their
occurrence

= rate at which alpha-faults produce errors (errors/hour)

= rate at which active beta-faults produce errors

(errors/hour)

[It was anticipated that alpha and beta-faults produce errors at the

same rate. However, the experiments showed a small difference between

e_ and e_.]

as = rate at which auxiliary programs are brought on-line

(programs/hour)

I/ds - average duration of an auxiliary program (hours/program)

q = proportion of auxiliary programs that activate a benign
fault

We note that

pl + p2 + p3 = i.

The parameters of the single-fault model are not independent. In fact,

pl + p2 + p3 = I

p2 = (p2 + p3)q[as/(as+ds)] = (l-pl)q[as/(as+ds)]

p3 = (p2 + p3)[l - q(as/(as+ds))] _ (l-pl)[l-q(as/(as+ds))].

The remaining parameters pl, as, ds and _ are independent.

From the results of the FIIS and previous experiments it was expected to

obtain estimates of pl, p3, e and q. The parameters p2, as, and ds

would be determined from flight control operational scenarios, via

estimates of a.) duration and b.) time between call-ups of auxiliary

programs.

20

4.4 EXTENSION TO MULTIPLE-FAULT MODEIS

To illustrate the potential use of the single-fault model in reliability

studies, a simple multiple-fault model will be constructed. The model

is for a multipro'cessor system, such as SIFT or FTMP, and is shown in

Figure 2. The model is constructed on the basis of the following

groundrules:

i) The system contains a core of powered, triplex processors and an

unlimited number of unpowered spares.

2)

3)

4)

5)

The core uses identical inputs and employs majority voting of

computed outputs to detect and isolate a faulty processor.

Single fault detection covera_.e and isolation is 100P.

When a faulty processor is identified it is immediately replaced

by a spare, which is then powdered.

The failure rate of an unpowe_ed spare - 0.

It is assumed, conservatively

processors results in loss of

has produced an error. (Thi:

states.)

that active faults in different

control (LOC) even if neither one

assumption reduces the number of

6) There is only one auxiliary _oftware program, i.e., q=l.

simplifies the transition pro'_abilities.)

(This

This model is interesting because LOC cannot occur due to exhaustion of

processors but only as a result of near-coincident active faults or the

simultaneous activation of benign fauLts in different processors.

We illustrate the derivation of transition rates by deriving the rates

from state #7. This state depicts the condition that one processor

contains an active fault and the o_her two processors contain benign

faults.

Transition from State #7 to State #6

The active fault produces an error while the other faults remain

benign. The error is detected an_J the faulty processor is replaced.

Transition from State #7 to State #9 (LOC)

The auxiliary program is called on-line or one of the two

processors, containing benign faults, experiences an active fault.

It is emphasized that this multiple-fault model is presented for

illustrative purposes, only. It is recognized that the generation of

appropriate multiple-fault models is a difficult undertaking,

particularly when correlated faults _re included, and is far beyond the

scope of this study.

21

3 GOOD eo,_

(DETECTED)

AA/ 3p
1

a _A/
3

LOC

g

d$

_/ : GOOD

A - ACTIVE FAULT

a -- ACTIVE FAULT

b = BENIGN FAULT

LOC = LOSS OF CONTROL

Figure 2.

2 (P2 + P3) X bb _/

6

(P2 + P3) _'

Multiple-Fault Model for a Multiprocessor System

(with a single auxiliary software program)

IPIX

/

5.0 DESCRIPTION OF FIIS CAPABILITIES

The following is an abstracted version of certain parts of Reference 3,

a companion document to this report. The intent here is to provide

adequate information about the FIIS testing capability to enable better

insight into the ensuing experimental results. For the type and scope

of testing undertaken, it was necessery to extend the capabilities of

the RDFCS. In particular, it was necessary to:

O

Automate sequences of command _iles applied to the Draper's FIS

software for test productivity.

Add a precise timing mechanism to measure the inverval from test

stimuli application to its detection for latency data.

Expand the instrumentation c_pability through the

utility computer for bandwidth and selectivity.

Set up test case post-pro,_essing

interpreting and storing resul_s.

Establish a test executive il the

control.

PDP 11/04

The resulting FIIS capability for

in the PDP 11/60 for

PDP 11/60 for the unified

tile RDFCS facility is depicted in

a_ external clock and an associated
Figure 3. Added hardware includes

DRIIC processor interrupt so that fault detection in an FCC is quickly

evident to the PDP 11/60 through a DRIIC interrupt. The rest of the

modifications are implemented in soft_are as described in Reference 3.

Considerable additional software has been developed to analyze, reduce,

and present the results presented herein.

23

POP 11/60

.DR11C
MUX

FCC #1
CHAN A

CHAN B

FCC #2
CHAN A

,Jl. em _l, I

CHAN B

Figure 3. Fault Insertion and Instrumentation System

24

6.0 OBJECTIVES OF THE FAULT INJECTION EXPERIMENTS

The resolution of the issues of the previous section requires a

combination of _ault injection experiments, industry surveys and

reliability analyses. Issues resolvable by fault injection experiments

were analysed to determine what additicnal data could be obtained by the

FIIS experiments. This resulted in the following specific objectives of

the fault injection experiments:

i) Obtain estimates of the propc.rtion of alpha and beta-faults,

i.e., the proportion of faults detected while executing the

inner and outer-loops, respectively.

2)

3)

Estimate and compare the dylamics of alpha and beta-faults,

e.g., obtain latency histogram_ for each type of fault.

Assess the ability of the sel_-test program to detect alpha and

beta-faults.

4) Estimate the proportion of faults affecting the control

surfaces.

5)

6)

7)

8)

9)

Estimate the parameters of _he strawman single-fault model,

i.e., pl, p3, ea, e_ and q.

Compare results for weighted ald unweighted faults.

Corroborate and compare result_ with those of Bendix and CSDL.

Evaluate the FIIS

obtain meaningful

effectively.

methodology with respect to its ability to

fault latency data efficiently and cost

Provide a database for future _tudies. It is intended that the

collective results of the Bendix, CSDL and FIIS experiments will

be used by future experimenters as goals and for comparison

purposes. An important featur_ of the FIIS experiments is the

use of flight-certified FCS as the target computer. It is hoped

that future flight control systems will produce similar results

for the stuck-at class of faults.

Permanent Versus Intermittent/Transient Faults

The initial intention was to simulate intermittent/transient faults

especially since the fault injection hardware provided this

capability. However, in planning these experiments, it quickly

became apparent that simulating intermittent/transient faults and

fault scenarios required the selection of too many arbitrary

parameters to yield convincing results. Among these were:

25

i) duration and reoccurrence rates,

2) place of occurrence within the FCSprogram,

3) failure modesof intermittent/transient faults.

In addition, the effort required to set-up these experiments would
have exceeded the time and resources of the study. Consequently, it
was decided to simulate permanent faults, only.

Pin-Level Failure Modes

Because of the extensive fault injection capability of FIIS a large

variety of pin-level faults could have been simulated. To mention

but a few (see Reference 3 for the complete list):

i) individual input/output pins faulted S-a-0/S-a-l,

2) individual input/output pins faulted by inverting their

nominal values ("invert" faults),

3) one or more input/output pins faulted as a function of the

values of other input/output pins.

It was recognized that the results (e.g., latency) would be strongly

affected by the kinds of failures injected and especially by the

proportion of input vectors which were changed by a fault. For

example, a S-a-0 on a single pin would change half of the input

vectors whereas an invert fault on the same pin would change all of

the input vectors. In the absence of failure mode data for the

actual devices it was considered too innovative to introduce fault

combinations other than S-a-0/S-a-i of single pins. In addition, it

was desirable to employ the same groundrules as the Bendix and CSDL

experiments so that the results could be compared. However, as a

concession to innovation, it was decided to inject invert faults,

with the proviso that the results would be separately tabulated to

test the relative latency of stuck-at versus invert faults.

26

7.0 RESULTS OF FII; EXPERIMENTS

7.1. TEST GROUNDRULES/PROCEDURES

Overview

The target hardware is a dual FCC, _hich implements a complete flight

control system for a commercial aiccraft (Lockheed L-lOll Tristar).

Faults were detected by comparison monitoring of computed variables

which were periodically exchanged between FCCs. Either FCC could

request and affect system disengagement if it observed a discrepancy in

any of these monitored variables. System disengagement constituted

"detection." In addition, the system featured hardware comparators

which were located in the secondary actuators. These comparators, which

were not faulted, effectively measured the difference between the

surface commands generated by the two FCCs. Again, comparator

exceedances constituted "detectior" and resulted in system

disengagement. The experiments were conducted in open-loop and closed-

loop scenarios.

Open-Loop Scenario

The simulated airframe was disconnected for all runs. As a consequence,

sensor inputs were invariant. In this configuration the operational

program consisted of the inner loop_ , mode logic servicing, executive

functions, synchronization, control p_nel and display servicing, voting

and monitoring and intercomputer communications. The open-loop program

executed approximately ii,000 assembl _" instructions every 50 ms.

Closed-Loop Scenarios

The simulated airframe was connect,_d, including the sensor feedback

signals. In addition to the open-loo]_ programs, the operational program

consisted of the autopilot modes: ,_ruise altitude hold, cruise climb,

cruise turn, localizer capture, gl deslope capture/track. The land

modes consisted of approximately 200 additional assembly language

instructions. In the autopilot mod_s the aircraft was perturbed from

equilibrium flight by initial cond_tions and control wheel steering

commands. The localizer mode was executed every i00 ms, the glideslope

modes, every 200 ms and the other mod_s, every 50 ms.

The open-loop experiments were conducted first. All faults were first

injected in the open-loop scenario and only undetected faults were

injected in the closed-loop scenarios This saved time since most faults

were detected in the open-loop experi_ments. Each undetected fault was

subsequently injected during an autopilot mode, the purpose being to

determine the proportion of faults detected by programs other than the

baseline program (it was assumed tha_ the baseline program consisted of

the open-loop programs and cruise al_itude hold). The same fault was

successively injected while executing each of the autopilot modes.

27

Self-Test

Each FCCcontains a self-test program which is normally executed in
background. During the open-loop and closed-loop experiments the self-
test program was _isconnected. In order to determine the coverage of
the self-test program and to identify "care faults" all faults which
were undetected by both the open-loop and closed-loop programs and a
larger sample of detected faults were injected separately, executing
only the self-test program.

Test Conditions

o Faults consisted of permanent S-a-0, S-a-I and pin inversions,
injected on input and output pins of almost every device on the
data path and control cards of the CAPS-6computer (see Appendix
A for the device complement). Devices were only excluded in the
event that they would not function when the FIIS multiplexers
were inserted.

o No faults were injected in the analog interface hardware.

o Faults were injected in a single FCCof the dual pair.

o Only single faults were injected.

o Faults were detected by comparison monitoring, exclusively.
Self-test was not executed in the open-loop and closed-loop
scenarios.

o No faults were injected in the hardware associated with failure
detection, i.e., hardware comparators and disengage mechanisms.

o Detection was recorded at 50 ms intervals (this was the sameas
the minor frame interval).

o An undetected fault run was terminated after 15 seconds of real
time (i.e., 300 open-loop iterations).

o Each fault was individually identified.

Coverage was tabulated for unweighted
the latter, faults were weighted in
rate of the device; in the former,
equally. The weights associated with
Appendix B.

and weighted faults. In
proportion to the failure
all faults were weighted
each fault are given in

All undetected faults were analyzed and "don't care" faults were
eliminated from the tabulations although the number of "don't
cares" was tabulated. "Don't care" faults consisted of unused
pins or signals that were always high or always low under all
operating conditions.

28

7.2 RESULTS

7.2.1 Open-Loop/Closed-Loop Detection Coverage

These results are given in Tables i through Ii. Tables 1-4 give the

results for unweighted faults; Tables 5-8 for weighted faults; Table 9

summarizes the results for open-loop faults; Table I0 summarizes the

results for baseline/auxiliary faults; Table ii gives a summary of

faults activated by autopilot modes. Altogether, 2715 distinct faults

were injected in devices of the Data Path and Control Path cards. Of

these, 166 were subsequently found to be "don't care" faults (6.11_).

In interpreting the tables it is noted that the column "totals" are not

the sum of the column entries. T_e "totals" refer to the column

headings, e.g., in Table I, 2549 = total number of faults injected; 2461

= total number of faults detected.

Table i: Open-Loop, Unweighted F_ults (Invert Faults Included)

Out of 2549 injected 'care" faults, 2461 (96.55_) were

detected and 88 (3.45_) were undetected. Of the 88

undetected faults, 15 w_re invert faults. 1.71_ of invert

faults were undetected whereas 4.37_ of stuck-at faults

were undetected, indicating that invert faults are less

latent than stuck-at fa1_its, as expected. Each of the 88

undetected faults was identified and injected while

executing self-test. A!I of these faults were detected,

indicating that they we_'e "care" faults. All micromemory

and 2901A faults were letected. This is not surprizing

since these devices are highly multiplexed. Detection of

input versus output p_n faults is approximately equal.

This was, at first, s_rprizing since it was conjectured

that input pin faults were more latent than output pin

faults. It was realized, subsequently, that most devices

of the CAPS-6 computer are sequential, and that output

faults of one device a_e, effectively, input faults of a

downstream device. A_ a consequence, the statistical

uncertainty of the results precludes a determination of

the relative latency of input and output pins.

Table 2: Closed-Loop, Unweighted Faults (Invert Faults Included)

Each of the 88, undetected, open-loop faults was

successively injected while executing each of the six

autopilot modes. Thus, the same fault could have been

detected while executing several modes, as indeed, the

results show. Of the _8 injected faults, 39 (44.32_) were

detected, and 49 (55.6E_) were undetected. All 88 faults

were detected by self-test. It is again noted that 15 of

the 88 faults were invert faults.

29

Table 3: Open-Loop, Unweighted Faults (Invert Faults Excluded)

These results are comparable to those of Table 1 except

that invert faults are excluded. Out of 1670 injected

"care" faults, 1597 (95.639) were detected and 7 3(4.379)

were undetected.

Table 4: Closed-Loop, Unweighted Faults (Invert Faults Excluded)

These results are comparable to those of Table 2 except

that invert faults are excluded. Out of 73 injected

"care" faults, 33 (45.219) were detected and 40 (54.719)

were undetected.

30

Device

Data Path
Control
S-a-0/S-a-i
Invert
2901
Micromemory
Input Pins
Output Pins
Self-Test

Totals

TABLE]

Open-Locp
Unweighted Faults (Invert Faults Included)

#
Faults # Faults # F_ults Don't %
Injected Detected Undetected Cares Detected

1535 1502 33 83 97.85

1014 959 55 83 94.58

1670"** 1597 73 123 95.63

879 864 15 43 98.29

423 423 0 25 I00.

231 231 0 9 I00.

1805 1741 64 87 96.45

744 720 24 79 96.77

1687 1687 0 0 I00.

2549 2461"* 88* 166 96.55**

%

Undetected

2.15

5.42

4.37

1.71

0.0

0.0

3.55

3.23

0.0

3.45**

Note: I) Injected faults do not incl_de "don't cares"

2) % "don't cares" = 6.11

3) * = Detected by self-test

4) ** = Excludes self-test

5) *** = 791 S-a-0, 806 S-a-i

31

Table 2

Closed-Loop
Unweighted Faults (Invert Faults Included)

Mode

#
Faults # Faults # Faults Don't
Injected Detected Undetected Cares

Alt Hold 88 13 75 0

Climb 88 13 75 0

Turn 88 13 75 0

Loc/Capt 88 16 72 0

GS/Capt 88 Ii 77 0

GS/Track 88 12 76 0
Self-Test 88 88 0 0

Totals

Note: i)

88 39* 49* 0

* - Detected by self-test

Detected Undetected

14 77

14 77

14 77

18 18

12 5

13 64

i00

85.23

85.23

85,23

81.82

87.5

86.36

0.

44.32 55.68

32

TABLE3

Open-Loop
Unweighted Faults (InveCt Faults Excluded)

Device

#
Faults # Faults # Flults Don't
Injected Detected Undetected Cares

Data Path 1016 990 26 60

Control 654 607 47 63

S-a-0/S-a-i 1670 1597 73 123
2901 283 283 0 13

Micromemory 146 146 0 9

Input Pins 1184 1133 51 69

Output Pins 486 464 22 54

Self-test 1115 1115 0 0

Totals

Detected

97.44

92.81

95.63

i00.

i00.

95.69

95.47

I00.

1670 1597"* 73* 123 95.63

Undetected

2.56

7.19

4.37

0.0

0.0

4.31

4.53

0.

4.37

Notes: I) _ "don't cares" = 6.86

2) * = Detected by self-test

3) ** = Excludes self-test

33

TABLE 4

Closed-Loop

Unweighted Faults (Invert Faults Excluded)

Mode

#

Faults # Faults # Faults Don't % %

Injected Detected Undetected Cares Detected Undetected

Alt. Hold 73 Ii 62 0 15.07 84.93

Climb 73 i0 63 0 13.7 86.3

Turn 73 i0 63 0 13.7 86.3

Loc/Capt 73 13 60 0 17.81 82.12

GS/Capt 73 9 64 0 12.33 87.67

GS/Track 73 12 61 0 16.44 83.56

Self-Test 73 . 73 0 0 i00. 0.0

Totals 73 33* 40* 0 45.21 54.79

Notes: I) * - Detected by self-test

34

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

Open-Loop, Weighted Fault; (Invert Faults Included)

These results are compara1_le to those of Table 1 except

that faults are weighted. Out of 282,345 injected "care"

faults, 274,926 (97.37_) were detected and 741 9(2.62_)

were undetected.

Closed-Loop, Weighted Faolts (Invert Faults Included)

These results are comparable to those of Table 2 except

that faults are weighted. Out of 7419 injected "care"

faults, 3591 (48.4_) were detected and 3828 (51.6_) were

undetected.

Open-Loop, Weighted Faults (Invert Faults Excluded)

These results are compar_ble to those of Table 3 except

that faults are weighted Out of 185,253 injected "care"

faults, 178,787 (96.51_) were detected and 6466 (3.49_)

were undetected.

Closed-Loop, Weighted FaILlts (Invert Faults Excluded)

These results are compar._ble to those of Table 4 except

that faults are weighte:l. Out of 6466 injected "care"

faults, 3063 (47.37_) we_:e detected and 3403 (52.63_) were

undetected.

Summary of Open-Loop FauLt____s

This table shows th_ relative differences between

detection coverage of I) unweighted vs weighted faults and

2) invert faults vs non-invert faults. In both cases, the

differences are of the order of I_.

35

TABLE5

Open-Loop
Weighted Faults (Invert Faults Included)

Device

S-a-0/S-a- i

Invert

2901

Micromemory

Input Pins

Output Pins

Self-Test

Totals

Notes : i)

2)

3)

#

Faults # Faults # Faults Don't

Iniected Detected Undetected Cares

%

Detected

185,253

97,092

60,912

24,255

192,350

89,995

220,482

178 787

96 139

60 912

24255

187 390

87.536

220 482

6466 15,444

953 5,964

0 3,600

0 945

4960 9,913

2459 11,495

0 0

96.51

99.02

I00.

I00.

97.42

97.27

I00.

282,345 274,926** 7419, 21,408 97.37

% "don't cares" = 7.05

* - Detected by self-test

** - Excludes self-test

%

Undetected

3.49

0.98

0.0

0.0

2.58

2.73

0.0

2.63

36

TABLE 6

Closed-l,oop

Weighted Faults (Invert Faults Included)

Mode

#

Faults # Faults # F;Lults Don't % %

Injected Detected Unde___._iecte______dr ares Detected Undetected

Alt. Hold 7419 1278 6141 0 17.23 82.77

Climb 7419 1135 61!84 0 15.3 84.7

Turn 7419 II00 6i19 0 14.83 85.17

Loc/Capt 7419 1376 6')43 0 18.55 81.45

GS/Capt 7419 793 6;26 0 10.69 89.31

GS/Track 7419 1188 6_31 0 16.0 84.0

Self-Test 7419 7419 0 0 I00. 0.0

Totals 7419 3591" 3 _28" 0 48.4 51.6

Notes: i) * - Detected by self-test

37

TABLE 7

Open-Loop

W_ighted Faults (Invert Faults Excluded)

Device

S-a-O/S-a-i

2901

Micromemory

Input Pins

Output Pins
Self-Test

Totals

Notes: I)

2)

3)

#

Faults # Faults # Faults Don't

Injected Detected Undetected Cares Detected

185,253

40,752

15,330

126,179

59,074

146,375

178 787

40 752

15 330

122 105

56 682

146 375

6466 15,444

0 1,872
0 945

4074 7,476

2394 7,968

0 0

96.51

i00.

i00.

96.77

95.95

i00.

185,253 178,787"* 6466* 15,444 96.51

"don't care" faults - 7.7

* - Detected by self-test

** - Excludes self-test

Undetected

3.49

0.0

0.0

3.23

4.05

0.0

3.49

38

TABLE

Closed-Lcop
Weighted Faults (Invert Faults Excluded)

f

Mode

#

Faults # Faults # FaL,its Don't _

Injected Detected Undetected Cares Detected Undetected

Alt. Hold 6466 1087 5379 0 16.81 83.19

Climb 6466 871 5595 0 13.47 86.53

Turn 6466 881 55_!5 0 13.63 86.37

Loc/Capt 6466 1112 53_4 0 17.2 82.8

GS/Capt 6466 647 5819 0 I0.0 90.0

GS/Track 6466 1188 5218 0 18.37 81.63

Self-Test 6466 6466 0 0 I00. 0o0

Totals 6466 3063* 34(,3* 0 47.37 52.63

Notes: i) * - Detected by self-test

39

TABLE9

Summaryof Open-LoopFaults

Invert Invert Invert Invert
Faults Faults Faults Faults
Included Included Excluded Excluded
Unweighted Weighted Unweighted Weighted

Detected 96.55 97.37 95.63 96.51

Undetected 3.45 2.63 4.37 3.49

40

7.2.2 Detection Coverage of Baseline and Auxiliary Programs

The reader will recall (Section 4.1) that a baseline program is a set of

software that is executed continuously. In obtaining the following

estimates, it was' assumed that the baseline program consisted of the

open-loop programs together with altitude hold. Thus, the auxiliary

progrms consisted of the remaining autopilot modes.

la. Unweighted Faults, Invert Fau]ts Included

Total Faults Injected - 2549

Detected by Baseline =2474;

Undetected = 75;

%Detected = 97.07

Undetected by Baseline but detectecl by Auxiliary - 26 (1.02%)

Undetected by Baseline and undetected by Auxiliary - 49 (1.92%)

lb. Unweighted Faults, Invert Faults Excluded

Total Faults Injected - 1670

_Detected by Baseline = 1608;

Undetected = 62;

%Detected - 96.287

Undetected by Baseline but detected by Auxiliary - 22 (1.317%)

Undetected by Baseline and undetec_ed by Auxiliary - 40 (2.395%)

2a. Weighted Faults, Invert Fault:_ Included

Total Faults Injected - 282,345

Detected by Baseline - 276,204;

Undetected = 6141;

%Detected = 97.83

Undetected by Baseline but detectel by Auxiliary - 2313 (0.819%)

Undetected by Baseline and undetected by Auxiliary = 3828 (1.92%)

2b. Weighted Faults, Invert Fault_ Excluded

Total Faults Injected = 185,253

Detected by Baseline = 179,874;

Undetected = 5379;

%Detected = 97.1

Undetected by Baseline but detected by Auxiliary = 1976 (1.65%)

Undetected by Baseline and undetected by Auxiliary - 3403 (1.84%)

Table I0: Summary of Baseline/Auxiliary Faults

These results indicate that most faults are detected

while executing the baseline program. However, there is

a significant proporticn of faults not detected by the

baseline and auxiliary programs, e.g., 2%, approximately.

The effect of these undetected faults remains to be

determined. It is noted that self-test detected all of

these faults.

41

TABLE i0

.°

Summary of Baseline/Auxiliary Faults

Invert Faults Included Invert Faults Excluded

UnweSghted WeSghted Unweighted Weighted

Detected by

Baseline

2474 (97.07%) 276,204 (97.83%) 1608 (96.25%) 179,874 (97.1%)

Not Detected

by Baseline

but Detected

by Auxiliary

26 (I.02%) 2,313 (0.819%) 22 (1.317%) 1,976 (1.65%)

Not Detected

by Baseline 49 (1.92%)

and not Detected

by Auxiliary

3,828 (1.92%) 40 (2.395%) 3,403 (1.84%)

42

7.2.3 Latency Histograms

The fault injection data was organized to give probability density

functions (pdf) of detection (_) versus time for a variety of different

fault sets. Histbgrams of the pdfes ar_ given in Figures 4 to 21. The

figures are organized as follows:

Figures 4 to 12:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure I0:

Figure Ii:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figures 16 to 21"

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:

Open-Loop, Unweighted Faults (Invert

Faults Sxcluded)

All Faults

Data Path

Control Card

2901A

Microme nory

S-a-0

S-a-i

Input P ins

Output Pins

Open-Loop, Unweighted Invert Faults

All Open-Loop, Unweighted Faults (Invert

Faults Included)

All Open-Loop, Weighted Faults (Invert

Faults Excluded)

Closed- Loop, Unweighted Faults (Invert

Faults Excluded)

Alt. He Id

CIimb

Turn

Loc/Cal t

GS/Capt

GS/Trk

were occasionally detected between 1 andAlthough a few faults (0.3_)

6.5 seconds, the time scales were terminated at 5000 ms. The percentage

of faults that were not detected is also indicated on each histogram.

All of the histograms show that most d_tected faults are detected within

500ms of their occurrence, irrespectiw of the types of faults injected,

e.g., S-a-0, S-a-l, invert. A comparison of Figures 9, i0, 13 indicates

that the histograms for S-a-0, S-a-i and Invert faults are remarkably

similar. The histogram for all :aults (Figure 4) reflects this

similarity. The alternating peaks and valleys, which are characteristic

of all of the histograms, reflect th,: complexity of error propagation.

From Figures 16 through 21 it can be seen that closed-loop faults

require somewhat longer times to produ,:e errors.

43

Figure 4. All Open-Loop, Unweighted Faults (Invert Faults Excluded)

_O

O

FI_

4.37% UNDETECTED

I̧ I I

1000.0 2000.0 3000.0

TIME CMSEC]

44

Figure 5. Open-Loop, Unweighted Dat_ Path Faults (Invert Faults Excluded)

CD

0
LA--
fq

0

0

_T4
[-_
r.O

L_ O_ iLO

b

0.0
I

1000,0
I

2000.0

TIME

2.56% UNDETECTED

_--q

3000.0

[MSEC]

r_- T

080 i
F

5000,0

,.5

Figure 6. Open-Loop, Unweighted Control Card Faults

(Invert Faults Excluded)

C_
to

CD

kf_
¢q

CD

CD__

o

CD
CD

CD

°il
i

CD

CO

@,0

7.199 UNDETECTED

J I I I I

1000.0 2000,0 3000.0 _000.0 SO00.0

TIME (MSEC)

46

Figure 7. Op£n-Loop, Unweighted 29_)IA Faults (Invert Faults Excluded)

O

O

O

0J

O

o i!

o_o1111
_|IIm

k 0.0% UNDETECTED

T- l I T i-

] 000.0 2(100.0 3000.0 _L'O0. :3 5000.0

T I I"1i: (MSEC)

47

Figure 8. Open-Loop, Unweighted Micromemory Faults

, (Invert Faults Excluded)

CD

CD--
OO

O

O--

0

r._ 0

CD
0,1

_6

0

0

,,1'

0.0

0.0% UNDETECTED

I I I I |

1000 , P_ 2000 .0 3000.0 4000.0 :n'_'a_,_:,J. __,a

TIME IMSEC)

48

' L

Figure 9. Open-Loop, Unwelghted S-a-f, Faults (Invert Faults Excluded)

CD

CD

0.0

L

I000.0

OF poor quALrr_

n iI
2000.0 3000.0

TIME (MSEC)

4_

3.05% UNDETECTED

"- _' I

4000.0
m

5o@n.0

Figure I0. Open-Loop, Unweighted S-a-i Faults (Invert Faults Excluded)

CD

CD

UD

Cq

CD

CD

LO

5.6% UNDETECTED

0.0
I 1 I I F

1000.0 2000.0 5000.0 4000.0 5000.0

TIME (MSEC)

50

Figure Ii. Open-Loop, Unw,_ighted Input Pin Faults

(Invert Faults Excluded)

3_
u_

CD

6_9

4.31% UNDETECTED

-----f _ - _ I _ I F
]000.0 20_ _0,0 3000.0 4000,0 5000.0

TIHE (HSEC]

Figure,12. Open-Loop, Unweighted Output Pin Faults

(Invert Faults Excluded)

c_

CD

C3

L) CD

o

CD

CD
UO

0.0

4.53% UNDETECTED

I I I T F

]000.0 2000.0 3000.0 4000,0 5000.0

TINE (MSEC)

52

Figure 13. Open-Loop, Unwei_ted Invert Faults

C3
0

CD
O--
tO

O

6_
U_
Cq

O

L)

t_

b

.-4

C3

C3

I

i I-I

i

0.0

1.71%

In I

1000.0 20CJ.O

IIME (_SEC)

UNDETECTED

!

3000.0

53

Figure 14. All Open-Loop, Unweighted Faults (Invert Faults Included)

CD

CD
C9
00

C9

C9
C3

CD

CD
CD-
CO

C3

u_

o

<

O

CD

O
OlD

e4

C3

6
CD

CD

0.0 1000.0

TIME

3.45% UNDETECTED

I

2000.0

(MSEC)

I"

3000.0

54

Figure 15. All Open-Loop, Weighi:ed Faults (Invert Faults Excluded)

_(ZD O

O

LO

_0

O

O O

tO

CD

f-q

O

eli

H
II

J
II
II

II

II

II

II

III
II

II

I I

1

0.0

3.49_ UNDETECTED

i' i a

i000.0 20)0.0 3000.0

TIME MSEC)

55

Figure 16. Closed-Loop, Unweighted Altitude Hold Faults
(Invert Faults Excluded)

CD

C3

t_

_2

0

z

0
D

0

0

0.0

84.93% UNDETECTED

I I I

1000.0 2000.0 3000.0

TIME (MSEC)

i

56

Figure 17. Closed-Loop, Unweig|_tedClimb Faults
(Invert Faults Excl, tded)

L_

.
0

x:

0.0
I

i000.0

86.3_ UNDETECTED

;tO00.0

TIME [MSEC)

3000.0

_7

Figure 18. Closed-Loop, Unweighted Turn Faults

(Invert Faults Excluded)

C3

_O

0

n_

0

0

t'N1--

CD

0

O

0.0 1000.0

I

2000.0

TIME (MSEC)

86.3% UNDETECTED

3000.0

58

Figure 19. Closed-Loop, Unweighted Localizer Capture Faults
(Invert Faults Excluded)

0.0 1000.0

82.12% UNDETECTED

2000,0

TIME MSEC)

l

3000.0

Figure 20. 'Closed-Loop, Unweighted Glideslope Capture Faults

(Invert Faults Excluded)

C3

4-

C3

O

C9

C3

CD

0.0

87.67% UNDETECTED

I I I

1000.0 2000.0 3000.0

TIME (MSEC]

60

Figure 21. Closed-Loop, Unweighted Glideslope Track Faults

(Invert Faults Excluded)

0

0.0 1000.0

83.569 UNDETECTED

I

2)00.0

TIME (MSEC)

I

3000• 0

6_

THIS PAGELEFT INTENTIONALLYBLANK.

62

8.0 COMPARISON WITH PREVIOUS FAILT INJECTION EXPERIMENTS

Test Ground Rules/Procedures/Test Condi;ions

I) Target Hardware

Bendix:

CSDL:

FIIS:

Bendix BDX-930 digital pr,,cessor.

FTMP, which included the (;APS-6 digital processor.

CAPS-6 digital processor.

2) Simulation Technique

Bendix:

CSDL:

FIIS:

The processor was simulated in software at the gate-level

and faults were injected _t gate nodes.

Faults were injected into the real hardware, at the pin-

level.

Faults were injected into the real hardware, at the pin-

level.

3) Sensor Inputs

Bendix:

CSDL:

FIIS:

Sensor inputs were selected at random at the start of each

frame.

Sensor inputs were normal sensor values, obtained from a

simulated airframe.

Sensor inputs were constsnt in the open-loop scenario and

normal sensor values, obtained from a simulated airframe,

in the closed-loop scenarios.

4) Fault Detection

Bendix: Faults were defined as "detected" if they produced an

error in a computed output.

CSDL: Faults were detected by the Bus Guardian Units

(comparators) and by background self-test programs.

FIIS: During the FCS experirlents, faults were detected by

software and hardware cc.mparators. Background self-test

was disconnected.

5) Types of Faults

Bendix:

CSDL:

FIIS:

Permanent S-a-0/S-a-l. Weighted faults, only. Faults

injected, one at a time.

Permanent S-a-0/S-a-l. [nweighted faults, only. Faults

injected, one at a time.

Permanent S-a-O/S-a-i anl invert. Weighted and unweighted

faults. Faults injected one at a time.

p_,_r_C p,_Cv BL_ ._','_ Y_ F_LM_D

63

6) I/O Hardware

7)

8)

9)

Bendix:

CSDL:

FIIS:

Analog I/0 hardware was not simulated.

Faults were not injected in the analog I/O hardware.

Faults were not injected in the analog I/O hardware.

Failure Detection Hardware

Bendix:

CSDL:

FIIS:

Not simulated; no faults injected.

Faults were injected in the BGUs.

No faults injected.

Termination of an Undetected Fault Run

Bendix:

CSDL:

FIIS:

After eight repetitions.

After 15 seconds of real time.

After 15 seconds of real time.

Identification of Undetected Faults

Bendix:

CSDL:

FIIS:

Faults were not individually identified. Although several

software programs were executed, in addition to the FCS,

it was never determined what proportion of faults,

undetected by one program, would be detected by another.

No information was given:

Faults were individually identified. A fault, which was

undetected while executing the inner-loops, was

successively injected while executing each outer-loop

program. Thus, it was possible to determine the latency

of the same fault for different software programs.

I0) Length of FCS Program

Bendix:

CSDL:

FIIS:

2200 assembly language instructions.

Data not given.

Ii,000 assembly language instructions.

Ii) Length of Self-Test Program

Bendix:

CSDL:

FIIS:

346 assembly language instructions

Data not given.

Approximately 500 assembly language instructions.

Test Results

i) FCS Detection Coverage of Stuck-At Faults

Bendix: 86.5% of gate-level faults (excluding memory bit-faults)

were detected, based on 148 injected "care" faults. Only

9% of memory bit-faults were detected.

64

CSDL:

FIIS:

3637 out of 21,055 faulls were undetected (17.3%). Of
these, approximately 3001, were definitely identified as
"don't cares." Assui_ing, conservatively, that the
remaining 637 were "care" faults, then pin-level coverage
was'97%. Of the dete, ted faults, between 2%and 4%
required background self- est for their detection.
97%were detected in the open-loop scenario and 98%, in
the combined open-loop an,[closed-loop scenarios, based on
2549 injected, "care" fau ts.

2) FCSDetection Coverage of Invert Faults

Bendix:
CSDL:
FIIS:

Invert faults were not si_lulated.
Invert faults were not sinulated.
Unweighted, open-loop f_ults:
versus 4.37% stuck-ats.

1.71% undetected inverts

3) FCSDetection Coverage of 2901AFaults

Bendix:

CSDL:
FIIS:

88% of gate-level faults were detected, based
injected "care" faults.
Data not given.
100%detection, based on _23 injected "care" faults.

on 52

4) Time to Detect Faults

Bendix:

CSDL:

FIIS"

Most detected faults were
occurrence.
Most detected faults were
occurrence.
Most detected faults wer_
occurrence; a few faults
detection.

detected within 800msof their

detected within 600msof their

detected within 500msof their
required up to 6.5 seconds for

5) Self-Test Coverage

Bendix:

CSDL:
FIIS:

97.4% of gate-level faults (excluding memorybit-faults)
detected, based on 2234 injected "care" faults. 92%of
all gate-level faults were detected, based on 2534
injected "care" faults. 97.6% of pin-level faults were
detected, based on 376 iILjected "care" faults.
Data not given.
100%detected, based on 687 injected "care" faults.

6) "Don't Care" Faults

Bendix:

CSDL:

FIIS:

15.5% of all gate-level faults were "don't cares". When
memorybits were excludel, 7.2% of gate-level faults were
"don't cares". 6%of pi_-level were "don't cares".
Possibly as muchas 17.3_ of pin-level faults were "don't
cares".
6.11% of pin-level fault_ were "don't cares".

65

THIS PAGE LEFT INTENTIONALLY BLANK

66

9.0 SUMMARY AND CONCLUSIONS OF FIIS EXPERIMENTS

When FIIS results are cited, they refel to unweighted faults with invert

faults exclude d. _

9.1 FAULT DETECTION

i) Most detected faults are detected within a few computational

frames of their occurrence, i .g., i0 frames - 500ms. [This

corroborates the results of p_'evious studies, e.g., Bendix and

Draper.]

2) Faults are activated (i.e., produce errors) primarily by

operating software and not by varying sensor inputs, as

evidenced by the high coverage in the open-loop scenario.

3) Most faults are activated be the baseline software (96.3_)

[these are alpha-faults in the single-fault model. This

coverage is considerably bette_ than the Bendix study indicated,

which is not surprising considering that the Bendix FCS program

was 2200 words whereas the ope1-1oop program was ii,000 words.]

4) A small proportion of open-loop detected faults are detected

between 1 and 6.5 seconds (0.39). [These are alpha-faults with

long latency times in the single-fault model.]

5) A small proportion of faults are not activated by the baseline

program but are activated by an auxiliary program (1.3_).

[These are beta-faults in the single-fault model. This

important observation was mace possible because a) individual

faults were identified in the experiments and b) auxiliary

software programs were part of the operating software. This

observation is important in c(nstructing a single-fault model.]

6) A small proportion of faults are not activated by either the

baseline or auxiliary programs (2.49). [These faults could

accumulate and, if eventually activated, could result in a near-

simultaneous loss of lanes. Preflight or background self-test

is an effective way to detect these faults.]

7) Faults which are activated by the baseline program produce

errors at a somewhat highe" rate than faults activated by

autopilot modes (and not activated by the baseline program).

8) Detection statistics for weighted and unweighted faults are

similar, e.g., 96.51_, open-l_op, weighted versus 95.63_, open-

loop, unweighted. [A sure,rising result since the failure

rate/pin differs widely over the devices of the caps-6

computer.]

_RECEDING PAGE BLANK NOT FILMI_I)

67

9)

i0)

ll)

12)

13)

14)

15)

16)

17)

Invert faults are less latent than stuck-ats, e.g., for

unweighted, open-loop faults, 1.71% undetected inverts versus

4.37% undetected stuck-ats.

Micromemory and 2901a faults are 100% detected. [Not surprising

since pin-level stuck-at faults on these devices are not very

latent.]

Detection of input versus output pin faults is approximately the

same. [It was expected that input pin faults would be more

latent than output pin faults. However, since output faults

are, effectively, input faults of downstream devices, the

difference in latency is probably not significant when tandem

devices are involved.]

Self test coverage is 100%. [Impressive, even at the pin-level,

especially for a 500 word program. The self test designer was

obviously well-acquainted with the hardware.]

6.11% of all faults were "don't cares." [This is consistent

with Bendix's results, which estimated 7% at the pin-level. The

relatively large number of "don't cares" and the uncertainty and

difficulty in identifying them precludes accurate estimates of

detection coverage, i.e., the statistical uncertainty is at

least several percent.]

FIIS test results generally corroborate the results of the

Bendix and CSDL studies. This is surprizing considering the

dissimilarity of input sensor selection, computer architecture

and operational software between the three studies.

The validity of the FIIS approach hinges on the validity of pin-

level fault models. Until this issue is resolved the results of

the FIIS and previous experiments must be considered tenatative.

However, the results can be used as a relative measure of fault

detection capability.

The FIIS results provide a good basis for the construction of a

single-fault model, e.g., identification of key states and

order-of-magnitude transition rates. This is the most

significant output of the experiments. The next logical step is

the construction of multiple-fault models and reliability

parameter sensitivity studies.

The FIIS approach to fault latency and coverage estimation is

relatively inexpensive compared with a software simulation

approach. For example, it required only 4 man weeks to perform

the FIIS experiments. This assumes that the FIIS fault

injection hardware and recording equipment is already in place.

68

18) The FIIS methodology

FIIS performance was

areas:

was thor,,ughly tested during the study.

impressi-re, especially in the following

a) Fault Generation Capa_ility

Although only S-a-0, S-a-i and invert faults were

injected, FIIS provided the capability of simulating a

wide variety of fault types, under software control.

b) Ease of Use

Injecting faults and recording data was tedious but

relatively simple after the initial set-up.

c) Fidelity

Since faults were iriected into real hardware there

was never any question about the fidelity of the

experiments nor was there a need to validate the

simulation.

d) Speed

All of the FIIS expe]iments were run in real time. As

a consequence, it _as possible and practicable to

determine detection coverage over long periods of time

and while executing _ variety of software programs.

9.2 Single-Fault Model Assessment

The results of the FIIS experiments confirmed the structure of the

single-fault model, at least to the l,_vel of detail it was intended to

represent. It was definitely confirme_t that the transitions from active

fault states are extremely fast r_lative to the rate of failure

occurrences. As a consequence, the;e rates can be approximated by

constants, as shown in (Reference ii). If, in addition, the transitions

between benign and active states Can 11so be approximated by constants,

then a markov model results. This g_eatly simplifies the single-fault

model.

On the basis of results from the Bendix, CSDL and FIIS experiments we

can obtain order-of-magnitude estimate_ of the parameters of the single-

fault model.

The parameter, pl

pl = proportion of alpha-faults.

From Table i0, .9625<pi<.9783.

From Bendix, .85<pi.

69

The Parameter, p2

p2 = proportion of beta-faults active at their occurrence.

This parameter cannot be determined from fault injection experiments. A

conservative estimate would be p2=0.

The Parameter, p3

p3 = proportion of beta-faults benign at their occurrence.

Since p3=l-pl-p2 and p2=O, we obtain

i) .0216< p3<.0373 (FIIS) and

2) p3<.15 (Bendix).

The Parameters, ea, e_

The histograms show that most alpha-faults are detected within 500 ms of

their occurrence and that active beta-faults tend to produce errors over

longer time intervals, e.g., up to 4 sec. Thus,

e_ > 7200/hour

e_ > 900/hour

The Parameter, q

q - proportion of auxiliary programs that activate a benign fault.

This parameter could not be obtained since the auxiliary programs used

in the experiments were only a subset of the autopilot modes. However,

preliminary (and conservative) estimates of survivability can be

obtained by assuming that there is only one auxiliary software program,

in which case q = i.

The Parameter, as

as = rate at which auxiliary programs are brought on-line.

This parameter is determined by the operational scenarios of the FCS and

cannot be determined by fault injection experiments. The estimated

range of as is .01/hour<as<10/hour.

The Parameter, I/ds

I/ds = average duration of an auxiliary program.

This parameter is also determined by the operational scenarios of the

FCS. The estimated range of I/ds is .01 hour<I/ds<l hour.

70

The Parameter,

- failure rate of an FCS lane.

The current range' of _ values is .001/h_ur<_<.0001/hour.

9.3 PROBLEM AREAS

The only serious problem encountered during the experiments was the

extreme sensitivity of some devices _o being placed on the extender

board. The associated module of such a device would not function

correctly in the presence of an intervening pair of field effect

transistors (FETS) and would immediatelf trigger a comparator alarm. No

data was acquired on these sensitive pins. The following devices would

not operate correctly on the extender board:

54LS74 D Flip Flop

54LS174 D Flip Flop

54LS175 D Flip Flop

54LS377 D Flip Flop

54LS161 Bit Counter

54LS194 Shift Register

71

THIS PAGE LEFT INTENTIONALLY BLANK

72

i0.0 RECOMMENDED FUTURE STUDIES

Although the FIIS, Bendix and]SDL studies have contributed

significantly to our understanding _f fault, error and detection

dynamics, a numbe'r of important issues connected with FCS survivability

assessment remain unresolved. These issues have already been identified

in Section 4.2. In order to resolve some of these issues the following

studies are recommended:

I. Failure Modes of Digital Devicea

Previous fault injection experiments have employed stuck-at

faults either on device pins or internal gate nodes. It remains

to be determined to what extent stuck-at faults represent failure

modes of real devices (Reference 8). A determination of real

failure mode data is required.

2. Pin-Level Versus Gate-Level Faults

Until actual failure mode dat._ becomes available, experimenters

will, no doubt, continue to inject pin-level and gate-level

stuck-at faults. The Bendi: study indicated a significant

difference between pin-level a ad gate-level detection coverage.

At issue is the validity of ei_:her fault type and the extent to

which one is more or less laten] than the other.

3. Single-Fault Model Incorporatin_ Intermittent/Transient Faults

The strawman single-fault model of Section 4.3 appears to be

adequate for permanent faults. The model should be extended to

include intermittent/transient faults. Estimates of occurrence,

duration and reoccurrence rates are required.

.

.

Multiple-Fault Models

In order to perform a reliability assessment of an FCS it is

essential to model multiple fault effects. The rudimentary

multiple-fault model of Figure 2 is a good starting point.

Reliability/Survivability Assessment of an FCS

The FIIS, Bendix and CSDL studies have provided a database of

fault, error and detection _ynamics, at least for permanent

faults. It now remains to use this data (augmented, if possible,

by intermittent/transient faul_ data) to assess the reliabilty/

survivability of an FCS. A reliability parameter sensitivity

study is needed in order to a) identify critical ranges of single

and multiple-fault model para_leters and b) determine inflight,

preflight and maintenance test coverage required to reduce latent

faults to acceptable levels.

73

PRE_,EDING PAC_ _LA,_;_, NOT FILMED

THIS PAGE LEFT INTENTIONALLY BLANK

74

ii.0 REFEREI:CES

I.

o

.

.

,

°

°

.

.

i0.

ii.

Larsen, W. E. and A. Carro, "Dil;ital Avionics Systems - Overview

of FAA/NASA/Industry-Wide Briefi1_g," 7th Digital Avionics Systems

Conference Proc., October 1986.

Mulcare, D. B., J. W. Benson, D Eldredge, W. E. Larsen, et al.,

"Hardware Fault Insertion and Instrumentation System (FIIS)

Definition Study," DOT/FAA/CT-83-32, FAA Technical Center, June

1983.

Benson, J. W., W. E. Larsen, and R. Taper, "Hardware Fault

Insertion and Instrumentation System: Mechanization and

Validation," Draft DOT/FAA/CT-86-31, November 1986.

Lala, J., and T. B. Smith, "Development and Evaluation of a

Fault-Tolerant Multiprocessor (FrMP) Computer - Volume III, FTMP

Test and Evaluation," NASA CR 166073, NASA Langley Research

Center, May 1983.

McGough, J. G., F. Swern, "Measurement of Fault Latency in a

Digital Avionic Processor," Part II, NASA CR 3651, NASA Langley

Research Center, January 1983.

Lala, J., and T. B. Smith, 'Development and Evaluation of a

Fault-Tolerant Multiprocessor (ITMP) Computer Volume I, FTMP

Principles of Operation)," NASA CR 166071, NASA Langley Research

Center, May 1983.

Lala, J., and T. B. Smith, 'Development and Evaluation of a

Fault-Tolerant Multiprocessor (]'TMP) Computer Volume II, FTMP

Software," NASA CR 166072, Ni,SA Langley Research Center, May

1983.

McGough, J. G., "Feasibility S udy for a Generalized Gate Logic
Software Simulator," NASA CR 172159, NASA Langley Research

Center, July 1983.

Hopkins, A., T. B. Smith, J. Lala, "FTMP - A Highly Reliable

Fault-Tolerant Multiprocessor f_r Aircraft," Proc. IEEE, Vol. 66,

October 1978.

McGough, J. G., "Effects of Near-Coincident Faults in Multi-

processor Systems," Proc. of 5th Digital Avionics Systems

Conference, November 1983.

McGough, J. G., Trivedi, K., Smotherman, M., "The

Conservativeness of Reliability Estimates Based on Instantaneous

Coverage," IEEE Trans. Computer_, July, 1985.

75

THIS PAGE LEFT INTENTIONALLY BLANK

76

APPENDIX l

CAPS 6 Compolents

* FR = Failure Rate, PPMH; Mil 217D, Airborne, Inhabited Transport

I. CAPS 6 Data Path Card

Pin;/ Total FR/

Device Component pev__ce Pins Device

Processor (ALU)

2901A UI4,UI5,UI7,UI8 40 160 .5792

Program Counter LSB Mux

54LS253 U5

Carry Input Sel. Mux

54LS253 U8

Processor Address Sel. Mux

54LS253 U9,UI0

54LS257 UII

Shift/Rotate Mux

54LS253 U2,U3

Data Sel. Mux

54LS253

54LS257

U21,U22,U23,U28 16

U29,U36 16

Status Register

54LS377 UI2 20

Instruction Register

54LS377 UI9,U20

Instruction Syllable Sel. Mux

54LS257 U30,U35

Address Select Mux

54LS257 U32,U33,U34,U37

Stack Vector Register

54LS194 U4

Total FR

2.3168

16 16 .1177 .1177

16 16 .1177 .1177

16 32 .1177

16 16 .0886

.2354

.0886

16 32 .1177 .2354

64 .1177 .4708

32 .0886 .1772

20 .4258 .4258

20 40 .4258 .8516

16 32 .0886 .1772

16 64 .0886 .3544

16 16 .1162 .1162

A-I

Device Component

Look-Ahead Carry
54LS182 UI3

Loop Counter
54LS163 U31

Data Bus Transceiver

7835 U38,U39,U40,U41

Interrupt Controller

2914 UI6

Pins/

Device

16

Total

Pins

FR/
Device Total FR

16 .0932 .0932

16 16 .1249 .1249

16 64 .1892 .7568

40 40 .5792 .5792

Total FR = 7.24

A-2

lit CAPS 6 Control Card

Device Component

PilLs/

De,'ice

Instruction Mapper Prom

HM7643 UI,U7,UI3 16

Control Store Memory

HM7643 U3,U4,U5,U6,U9,

UIO,UII,UI2,UI7,

UI8 16

Next Address Control Prom

HM7603 U8 16

Transfer Bus Address Register

54LS377 U40,U42 20

Control Registers
54LS377 U24,U25 20

54LS174 U21,U23 16

29LS18 U30,U31,U32 16

Transfer Bus Access Control Registers

54LS175 U22 16

Interrupt Decoder
54LS138 U33 IE

Control Register Decoder

54LS138 U46

Microprogram Sequencer
2911 UI4,UI5,UI6 2(_

Clock/Control Logic Register
54LS175 U34

Clock/Control Logic D FFs

54LS74 U20A,U20B,U27B

U29A,U39B

Transfer Bus Acquisition Logic D FFs

54LS74 U29B,U39A 8

Transfer Bus Address Transceiver

7835 U47,U48,U49,U50 I_

Total

Pins

FR/
Device Total FR

48 .1899 .5697

160 .1899 1.899

16 .1014 .1014

40 .4258 .8516

40 .4258 .8516

32 .3117 .6234

48 .1024 .3072

16 .2983 .2983

16 .2870 .2870

16

60

.2870 .2870

.4258 1.2774

16 .2983 .2983

40

16

.0519 .2595

.0519 .1038

64 .1892 .7568

Total FR = 8.772

A-3

THIS PAGELEFTINTENTIONALLYBLANK

A-4

APPENDIX :_

Fault Weigh::ing

In the computatioh of detection cove_:age each fault was weighted in

proportion to the failure rate of its issociated device. Thus, pins of

devices with large failure rates were _iven greater weight than pins of

devices with smaller failure rates. T:m relative weighting of each pin

is given in the following table. Th_ FR/Pin was obtained by dividing

the failure rate of the device by the nlmber of pins.

Device Nu_nber of Equivalent Faults/Pin

2911

54LS377

54LS174

54LS175

54LS138

2901A

HM7643

7835

54LS163

54LS253

54LS194

54LS74

29LS18

HM7603

54LS182

54LS257

0213 213

0213 213

0195 195

0186 186

0179 179

01448 145

01187 119

01183 118

00781 78

00736 74

00726 73

0065 65

0064 64

00634 63

00583 58

00554 55

When constructing latency histograms (r when estimating coverage, each

fault was assumed to be representative of a larger set, the number being

equal to the "number of equivalent faults/pin." Thus, for example, if a

pin fault of 2911 is detected, it wi:l be counted as though 213 faults

were detected (and injected).

B-I

T_rYr I T_ l_ 6 I r_'T" - R _ / "_ I,

• T,,,o'.,gl;,,_f.

2 _ _ab,cr.,_mjaR _

Hardware Fault Insertion and InstrumentatOon System:

Experimentation and Results

y. AMIluwlll

J. W. Benson, D. B. Mulcare, W. E. Larsen

I _', ¢mlmq _

L _m

• _arw.nl O,pn_ _

lr_,-,,,n,_ Fir's^ ^ /,_,rrl oc /"l I

• Inwio-_l Onl_m_ Pi_ anal m

Lockheed-Georgia Company

Marietta, Georgia 30063

lZ. la_,_ Alw_, _ N Adam
U.S. Department of Transportation

NAS2-I1853

I1. C,m,Ulm_ _ _.

Federal Aviation Administration Technical Center

Atlantic City Airport, New Jersey 08405

Point of Contact: W. E. Larsen/MS 210-2

Ames Research Center

Moffett Field, CA 94035

w

This report describes the motivation, co lduct, and analysis of some 2500 low-

level hardware fault cases applied in automated testing at the NASA Ames

R_configurable Digital Flight Control System (RDFCS) Facility. Fault detection

was correlated with hardware and software fault monitoring, and in limited

cases, with sensitivity to flight program execution modes. Results obtained

have been statistically assessed to ascertain system-level reliability

implications based on a model that is described herein. The overall

methodology/facility itself has been _ritiqued and found to constitute a

promising enhancement to current practice.

I1. K,wVllwllll__A_m_'¢_)
Automated Testing, Digital Flight

Controls, Fault Coverage, Fault

Latency, Fault Modeling, Hardware Fault

Monitors, Statistical Fault Data

Unclassified

Unlimited

;, Subject Category 38

I t'"'-IUnclassille(_

